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BACKGROUND: Arsenic exposure affects >200million people worldwide, including >50million in Bangladesh. Arsenic exposure increases the risk of
cancer and other chronic diseases, and one potential mechanism of arsenic toxicity is epigenetic dysregulation.
OBJECTIVE: We assessed associations between arsenic exposure and genome-wide DNA methylation measured at baseline among 396 Bangladeshi
adults participating in the Health Effects of Arsenic Longitudinal Study (HEALS) who were exposed by drinking naturally contaminated well water.
METHODS:Methylation in whole blood DNA was measured at ∼ 850,000CpGs using the Illumina InfiniumMethylationEPIC (EPIC) array. To assess
associations between arsenic exposure and CpG methylation, we used linear regression models adjusted for covariates and surrogate variables (SVs)
(capturing unknown technical and biologic factors). We attempted replication and conducted a meta-analysis using an independent dataset of
∼ 450,000CpGs from 400 Bangladeshi individuals with arsenical skin lesions.

RESULTS: We identified 34 CpGs associated with log2-transformed creatinine-adjusted urinary arsenic [false discovery rate ðFDRÞ< 0:05]. Sixteen of
these CpGs annotated to the 450K array, and 10 associations were replicated (p<0:05). The top two CpGs annotated upstream of the ABR gene
(cg01912040, cg10003262). All urinary arsenic–associated CpGs were also associated with arsenic concentration measured in drinking water
(p<0:05). Meta-analysis (n=796 samples) identified 221 urinary arsenic–associated CpGs (FDR<0:05). The arsenic-associated CpGs from the
meta-analysis were enriched in non-CpG islands and shores (p=7:9× 10−8) and depleted in promoter regions (p=1:1×10−3). Among the arsenic-
associated CpGs (FDR< 0:05), we observed significant enrichment of genes annotating to the reactive oxygen species pathway, inflammatory
response, and tumor necrosis factor a (TNFa) signaling via nuclear factor kappa-B (NFjB) hallmarks (p<0:05).
CONCLUSIONS: The novel and replicable associations between arsenic exposure and DNA methylation at specific CpGs observed in this work suggest
that epigenetic alterations should be further investigated as potential mediators in arsenic toxicity and as biomarkers of exposure and effect in exposed
populations. https://doi.org/10.1289/EHP3849

Introduction
Arsenic exposure from naturally contaminated drinking water is a
global public health concern that affects >200million people
worldwide (Naujokas et al. 2013), and ∼ 56million in Bangladesh
(Flanagan et al. 2012). Prior to remediation efforts, ∼ 95% of the
drinking water wells in Bangladesh contained water with inorganic
arsenic concentrations above 10 lg=L, the World Health Organi-
zation (WHO) recommended maximum level of exposure (Ahsan
et al. 2000; Anawar et al. 2002; Van Geen et al. 2002). Inorganic
arsenic is classified as a group I carcinogen by the International
Agency for Research on Cancer, and long-term exposure is associ-

ated with risk for nonmelanoma skin (Karagas et al. 2015), lung
(Lamm et al. 2015), and bladder cancer (Gamboa-Loira et al.
2017; Lamm et al. 2015) as well as arsenical skin lesions (a hall-
mark of chronic arsenic exposure). Chronic environmental arsenic
exposure also increases the risk of other chronic diseases, includ-
ing cardiovascular diseases (Moon et al. 2017; Navas-Acien et al.
2005) and respiratory disease (Sanchez et al. 2018) and overall
mortality among Bangladeshi adults (Argos et al. 2010).

Arsenic is not considered to be directly genotoxic, and poten-
tial mechanisms of arsenic toxicity include induction of oxidative
stress and inflammation, inhibition of DNA repair, and epigenetic
dysregulation, including alteration of DNA methylation. DNA
methylation is characterized by the addition of a methyl group to
a cytosine nucleotide, frequently located within CpG sites in the
genome. DNA methylation (and the underlying chromatin state it
represents) provides an additional level of transcriptional regula-
tion and has an important role in maintaining genomic stability.
Exposure to environmental toxicants, like arsenic, can induce
changes in both global and gene-specific DNA methylation
(Cortessis et al. 2012; Martin and Fry 2018). Some potential
mechanisms by which arsenic could disrupt DNA methylation
include interaction with methylation or chromatin maintenance
machinery, depletion of cofactors involved in DNA methylation
synthesis, interaction with transcription factor binding sites
(TFBS), and alteration of the inflammatory and oxidative envi-
ronment of the cell (Bailey and Fry 2014; Ren et al. 2011).
Arsenic-induced alterations of DNA methylation may be an
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important component in the mechanism of arsenic toxicity and
carcinogenesis.

While several studies have examined prenatal arsenic exposure
and genome-wide DNA methylation (Cardenas et al. 2015a,
2015b; Green et al. 2016; Kile et al. 2014; Koestler et al. 2013;
Rojas et al. 2015), only four studies have examined arsenic expo-
sure and genome-wide DNA methylation in adults (Ameer et al.
2017; Argos et al. 2015; Liu et al. 2014; Seow et al. 2014). Argos
et al. identified four urinary arsenic–associated CpGs and three
blood arsenic–associated CpGs (Bonferroni threshold of p<10−7)
in Bangladeshi adults (n=400), with a wide range of environmen-
tal arsenic exposure and diagnosed with skin lesions (Argos et al.
2015). Liu et al. identified 22 differentially methylated CpGs
(p<10−4) in adults (n=46) from the United States with low ar-
senic exposure compared with adults in Bangladesh (Liu et al.
2014). Ameer et al. identified six urinary arsenic–associated CpGs
[false discovery rate ðFDRÞ<0:05] among Andean women from
Argentina (n=93) with a wide range of environmental exposure,
similar to Bangladesh (Ameer et al. 2017). Seow et al. conducted a
pilot study comparing genome-wide DNA methylation between 10
arsenical skin lesions cases and 10 lesion-free controls from
Bangladesh, but no significant associations with methylation were
observed (Seow et al. 2014). These prior studies differed with
respect to study population, sample size, exposure assessment and
level, disease status, and statistical approaches, likely contributing
to the variability in CpGs identified and patterns of genome-
wide methylation observed (Argos 2015). Prior studies used the
Illumina 450 K array, while the newer Illumina Infinium-
MethylationEPIC (EPIC) array measures methylation at approxi-
mately 850,000 CpGs, including >90% of the CpGs on the 450 K
array as well as substantial coverage of CpGs in enhancer regions
and CpG shores (Pidsley et al. 2016). By including these additional
sites, the EPIC array enables evaluation of methylation within dis-
tal regulatory regions of the genome that may be more susceptible
to environmental exposures, like arsenic, since methylation at
enhancers is more variable and dynamic and not as well preserved
(Jones 2012).

In this study, we assess the association between exposure to
arsenic measured in urine (prior to arsenic mitigation efforts)
and genome-wide DNA methylation assessed using the EPIC
array in 396 adults from the Health Effects of Arsenic
Longitudinal Study (HEALS). HEALS is a population-based
cohort of arsenic-exposed Bangladeshi adults established to
assess the health effects associated with consumption of
arsenic-contaminated water (Ahsan et al. 2006a). We validate
arsenic-associated CpGs by examining their association with ar-
senic concentration in drinking water and replicate observed
associations in an independent cohort of 400 Bangladeshi
adults. We then conduct a meta-analysis of both cohorts to iden-
tify additional putative arsenic-associated CpGs.

Methods

Study Population
HEALS was initiated to prospectively investigate the health
outcomes associated with chronic arsenic exposure through
consumption of groundwater in a sample of Bangladeshi adults
with homogenous ethnic and sociocultural characteristics (n=
∼ 12,000) and little to no genetic admixture in Araihazar,
Bangladesh (Pierce et al. 2012). This study has been described
previously (Ahsan et al. 2006a). HEALS participants were
recruited between October 2000 and May 2002. Participants
were sampled from married couples between ages 18–75 y who
resided in study area for at least 5 y. Trained study physicians
(blinded to arsenic exposure) conducted in-person interviews,

clinical evaluations, and skin lesion assessment, and collected
urine and blood samples using structured protocols (Ahsan et al.
2006b). Participants in this epigenome-wide association study
(EWAS) (n=396) were randomly selected from the random
subcohort recently included in a genome-wide association
study (Pierce et al. 2012).

Data from the Bangladesh Vitamin E and Selenium Trial
(BEST) were used to replicate associations observed in HEALS.
BEST is a 2 × 2 factorial randomized chemoprevention trial eval-
uating the effects of vitamin E and selenium dietary supplemental
and skin cancer risk among individuals with arsenical skin lesions
from rural central Bangladesh (Argos et al. 2013). BEST partici-
pants were recruited between August 2006 and August 2009 and
were between 25–65 y old, resided in the study area, and had ar-
senical skin lesions. Arsenic exposure was assessed in urine, and
whole blood was collected at baseline for all BEST participants.
Genome-wide methylation was previously measured on the 450 K
array for 400 BEST participants, and the results were reported
by Argos et al. (2015). The study protocols were approved by
the Institutional Review Boards of the University of Chicago,
Columbia University, and the Bangladesh Medical Research
Council. Informed consent was obtained from all participants.

Exposure Assessment
Arsenic was measured in both urine and water for each HEALS
participant. At baseline, each participant identified the primary
well used as their main source of drinking water. Spot urine sam-
ples were obtained from each participant at baseline. Arsenic in
urine and water was measured using graphite furnace atomic
absorption spectrometry (AAnalyst 600 spectrometer; Perkin
Elmer) in a single laboratory (Trace Metal Core Laboratory at
Columbia University), and the limit of detection for this method
was 2 lg=L and 5 lg=L for urine and water, respectively (Nixon
et al. 1991). For arsenic in well water, any samples that were
below the limit of detection were reanalyzed using inductively
coupled plasma mass spectrometry with a detection limit of
0:1 lg=L (Cheng et al. 2004). Urine creatinine was measured by
a colorimetric Sigma Diagnostics Kit (Sigma). Total urinary ar-
senic was divided by urine creatinine to obtain creatinine-
adjusted urine arsenic (lg=g creatinine).

DNAMethylation
DNA was extracted from clotted blood using FlexiGene DNA Kit
(Qiagen). We then bisulfite converted 500 ng of DNA using EZ-96
DNA Methylation™ Kit (Zymo Research). All samples were then
prepared and analyzed in accordance with the manufacturer guide-
lines and protocol for the Infinium MethylationEPIC array
(Illumina). The EPIC array measured methylation at 866,895
CpGs. We removed CpGs with a detection p>0:01 in one or
more samples (n=26,629) or missing methylation in >5% of sam-
ples (n=85). Cross-reactive CpGs were removed (n=41,920), as
well as CpGs annotating to a single-nucleotide polymorphism
(SNP) or within a single base pair extension (n=7,791) (Pidsley
et al. 2016). We removed CpGs annotating to the X and Y chro-
mosomes to avoid potential gender bias in methylation patterns as
well as non-CpG and SNP probes on the array (n=19,278). The
total CpGs included in the analysis were 771,192.

One sample from HEALS was removed due to mismatched
sex. After imputing beta values for missing CpG methylation
using k-nearest neighbors method (k=10) (Troyanskaya et al.
2001), the dataset was normalized using the beta mixture quantile
(BMIQ) method. BMIQ is an assumption-free approach to adjust
for type I/II probe bias (Teschendorff et al. 2013). We applied the
ComBat function in R to adjust for batch effect due to plate
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(Johnson et al. 2007; Leek et al. 2012). This batch effect was
removed after reviewing the principal components analysis of the
batch-adjusted data. All processing of DNA methylation array
data and analyses were conducted in R 3.4.1.

Association Analyses
All statistical analyses were performed using logit transformed beta
values and M-values {log2[beta/(1 − beta)]}, unless noted. The
range of beta values is 0 (0% methylated) to 1 (100% methylated),
while M-values range from −1 to 1. We selected covariates a
priori and adjusted for age (continuous variable), sex, smoking
status (categorized as never, former, and current smoker based on
self-report), and body mass index (BMI) category [categorized
as normal (reference), underweight, overweight, obese, and
unknown]. We log2-transformed urinary and water arsenic to
reduce the influence of outlying values; arsenic exposure was also
modeled as an untransformed continuous and an ordinal variable
across integer-coded quartiles [first (<113 lg=g), second (114–
201 lg=g), third (202– 350 ug=g), fourth (>350 lg=g)]. We
applied surrogate variable analysis (SVA) to adjust for unknown
biologic and technical effects (Leek and Storey 2007; Leek et al.
2012). SVA has been demonstrated to perform stably (McGregor
et al. 2016) and optimally identify informative CpGs in genome-
wide methylation studies (Kaushal et al. 2017), and it was chosen
over a cell type–adjusted approach (Houseman et al. 2012) as our
primary analysis approach since it produced a lower genomic infla-
tion factor. We estimated surrogate variables (SVs) using a
permutation-based approach (Buja and Eyuboglu 1992). For each
CpG, we analyzed the association with arsenic using linear regres-
sion adjusting for SVs and covariates in limma in R (Ritchie et al.
2015) and computed the genomic inflation factor (k) for EWAS
(Aulchenko et al. 2007; van Iterson et al. 2017). A Bonferroni
threshold was determined at a=0:05, our threshold for epigenome-
wide testing. The FDR p-values were computed using the
Benjamini-Hochberg method (Hochberg and Benjamini 1990).
X2-tests were applied to compare the distribution of arsenic-
associated CpGs to the remaining CpGs across genomic features.
UCSC genome (http://genome.ucsc.edu/), FANTOM5 (Andersson
et al. 2014), and ENCODE (Thurman et al. 2012) annotations were
provided by Illumina and used to annotate and assign genomic fea-
tures to CpGs based on human reference genome GRCh37. If CpGs
were assigned TSS200 or TSS1500 (at least 200 and 1500 base
pairs upstream of transcriptional start site), we annotated these
CpGs as being located in a promoter region. DNase I hypersensitive
sites (DHS) and TFBS regions were indicated by evidence from
ENCODE (Thurman et al. 2012) while enhancer regions were indi-
cated by supporting evidence from FANTOM5 (Andersson et al.
2014). In a sensitivity analysis, we also analyzed our data using a
reference-based approach, estimating six cell type proportions
(monocytes, B-cells, granulocytes, CD8T, CD4T, and natural killer
cells) from a whole blood reference panel (Houseman et al. 2012).
For the reference-based approach, we performed linear regression
adjusting for estimated cell type proportions and covariates using
limma.

Differential Methylation Regional Analysis
We examined associations between urinary arsenic in HEALS
and differentially methylated regions (DMRs) using DMRcate
(Peters et al. 2015). DMRcate is agnostic to the direction of the
association for each CpG and all annotations except those related
to the spatial location (i.e., chromosome number and map posi-
tion). DMRs are then defined by agglomerating CpG locations
with an adjusted p-value below a selected threshold (based on
FDR) that are at most k nucleotides from each other. Each DMR

is assigned a minimum FDR (minFDR) that is from the lowest
adjusted p-value among the CpG locations contained within it.
We searched for DMRs using a bandwidth of 1,000 nucleotides
(k=1,000) and scaling factor of 2 for the bandwidth (C=2) (rec-
ommended parameters for 450 K and EPIC arrays). We restricted
to DMRs that contained at least two CpGs, and applied a strin-
gent cutoff threshold of FDR<10−4. The genomic region for the
top three DMRs are visualized using coMET (Martin et al. 2015).

Gene Set Enrichment Analyses
To evaluate the annotation of urinary arsenic–associated CpGs to
pathways and biologic processes from the discovery analysis and
the meta-analysis, we conducted gene set enrichment analyses
(GSEA) using the gometh function in missMethyl (Phipson et al.
2016). Gometh accounts for the potential bias in GSEA due to
number of CpGs per gene by computing prior probabilities
(Geeleher et al. 2013) and evaluates enrichment using a hyper-
geometric test. We tested enrichment among arsenic-associated
CpGs among the top 500 arsenic-associated CpGs and arsenic-
associated CpGs below FDR of 0.05 within gene sets from the
KEGG pathways (https://www.genome.jp/kegg/) (n=324 path-
ways) and hallmark gene set collection (n=54 sets), concise sets
curated from multiple founder gene sets and gene expression data-
sets (Liberzon et al. 2015). Our justification for examining enrich-
ment among the top 500 arsenic-associated CpGs was that it was
difficult to examine genomic enrichments among a limited number
of arsenic-associated CpGs at an FDR<0:05, and arsenic likely
has numerous biologic effects on the epigenome that might not
reach epigenome-wide significance. We extracted results with
p<0:05 since our analysis was exploratory and underpowered to
detect enrichment at more stringent significance thresholds.

Meta-Analysis
We conducted a meta-analysis of genome-wide methylation and
urinary arsenic using data from HEALS (n=396) and the BEST
cohort (n=400). Using the same procedure applied to the
HEALS EPIC array data, we preprocessed, BMIQ normalized,
estimated SVs, and analyzed the BEST 450K array data. Among
the overlapping CpGs in HEALS and BEST (n=390,810), the
association estimate and p-value for each CpG were obtained
from BEST and HEALS and meta-analyzed using the sample
size based approach in METAL software (Willer et al. 2010).

Gene Expression
Gene expression data were only available for the BEST partici-
pants included in this study and have been previously described
(Argos et al. 2015; Gao et al. 2015). Briefly, gene expression was
measured using the Illumina HT-12 v4 BeadChip according to
manufacturer’s protocol. The chip includes 37,231 probes and
covers 31,335 genes. The gene expression values were quantile
normalized and then log2 transformed. COMBAT was used to
adjust for batch effect (Johnson et al. 2007). We extracted gene
expression probes corresponding to genes that annotated to our
arsenic-associated CpGs identified in the meta-analysis for 371
BEST participants with expression data. To assess the associa-
tions between gene expression and methylation, we ran Pearson
correlations and linear models adjusted for age and sex, and
extracted the direction and p-value for each association.

Local Methylation Quantitative Trait Loci (cis-mQTL)
Analyses of Arsenic-Associated CpGs
HEALS participants were genotyped on the Illumina Human-
CytoSNP-12 v2.1 array with 299,140 markers. We used MaCH

Environmental Health Perspectives 057011-3 127(5) May 2019

http://genome.ucsc.edu/
https://www.genome.jp/kegg/


software (Li et al. 2010) to conduct genotype imputation using
1,000 genomes reference haplotypes (version 5; 1000G Phase 3).
We examined cis associations between SNPs and CpGs within
a 1-megabase window (500 kb upstream and downstream of
the CpG) using genotype dosages and matrixeQTL software
(Shabalin 2012). The model was adjusted for age, sex, and first
four methylation principal components (PCs). We summarized
the total SNPs tested for each CpG and number that reached
FDR of 0.01, and reported the genomic information for the lead
SNP (smallest p-value) and distance from CpG.

Replication Analysis for Meta-Analysis Arsenic-Associated
CpGs among Andean Women
We attempted replication of the urinary arsenic–associated CpGs
identified the meta-analysis (n=221) using data from an inde-
pendent population of Andean women from Argentina that have
been previously published (Ameer et al. 2017). Methylation was
measured on the 450 K array for 93 women. For each CpG, the
association between methylation (M-values) and log-transformed
urinary arsenic was examined and adjusted for age, coca usage
(yes/no), and estimated fractions of granulocyte and natural killer
cells. We extracted the direction of association and p-value for
217 of our 221 CpGs with available data from the Ameer et al.
(2017) analysis.

Results
Our HEALS subcohort used for the discovery EWAS (n=396)
was randomly drawn from previously genotyped participants in
HEALS (also randomly selected). The median age of our subco-
hort was 36.5 y [interquartile range (IQR): 30.0, 45.0 y] (Table 1),
and there were more women (58%) than men (42%). Current
smokers comprised 34% of the HEALS subcohort. At base-
line, 76% of our participants consumed water from arsenic-
contaminated hand-pumped tube wells with estimated arsenic con-
centrations above the WHO guideline of 10 lg=L, and 50% of our
participants consumed water with concentrations above the
national Bangladesh standard of 50 lg=L. The median urinary ar-
senic was 201:5 lg=g creatinine (IQR: 113.5, 350:0 lg=g).

Urinary arsenic–associated DNAMethylation in HEALS
We conducted an EWAS of log2-transformed urinary arsenic
(creatinine adjusted) using data on 771,192 CpGs measured on
the EPIC array among 396 HEALS participants (Figure 1; Figure
S1; Excel Table S1). After adjustment for covariates and SVs

(n=27), 34 CpGs were associated with log2- transformed urinary
arsenic at an FDR of 0.05 (p<2:2× 10−6) (Table 2; Figure S2).
From the analysis of beta values (range 0 to 1), the association
estimates across these 34 CpGs ranged from 0.016 decrease to a
0.008 increase in methylation per doubling of urinary arsenic.
Decreased methylation was associated with increased arsenic ex-
posure for 23 of the 34 associated CpGs (FDR<0:05). Arsenic-
associated CpGs (FDR<0:05) were predominantly located in
CpG shores (n=14) and non-CpG islands (n=14) (Figure 1B).
Seven CpGs that passed Bonferroni-threshold (p<6:5× 10−8)
were located upstream of the ABR (ABR activator of RhoGEF and
GTPase) gene on chromosome 17 (cg01912040, cg10003262), in
the SEMA4G (semaphorin 4G) gene body on chromosome 10
(cg05962511), in the MAPRE2 (microtubule associated protein
RP/EB family member 2) gene body (cg17420142), in the GBAP1
(glucosylceramidase beta pseudogene 1) gene body (cg06466147), in
the NSMF gene body (cg09082427), and in the NBR1 (NBR1 autoph-
agy cargo receptor) 50 untranslated region (UTR) (cg04193083).

The results from the log2-transformed urinary arsenic analysis
were compared with results from analyses where urinary arsenic
was modeled as an untransformed continuous or an ordinal quar-
tile (integer-coded) variable. Across arsenic exposure models, the
genomic inflation was similar, and all untransformed continuous
and ordinal quartile arsenic-associated CpGs (p<0:05) overlapped
with log2-transformed arsenic-associated CpGs (FDR<0:05;
n=34) (Table S1). Among the 34 arsenic-associated CpGs identi-
fied (FDR<0:05), 31 were significantly associated with log2-
transformed urinary arsenic (p<0:05) prior to adjustment for
covariates and SVs. Of the 34 arsenic-associated CpGs identified
from the SV model, 68% (n=23) and 97% (n=33) were also
associated with urinary arsenic at FDR of 0.05 and p<0:05,
respectively, in the cell type–adjusted model. When we examined
the associations between urinary arsenic and estimated cell type
proportions, log2-transformed urinary arsenic was associated with
decreased CD4T percentage [b= − 0:5 (0.2); p=0:01] and
increased granulocyte percentage [b=0:8 (0.4); p=0:05] after
adjustment for age, sex, smoking status, and BMI (Table S2), sug-
gesting that urinary arsenic was modestly associated with variation
in estimated cell composition.

Among the 34 urinary arsenic–associated CpGs (FDR<0:05)
discovered in HEALS, we attempted replication for the 16 CpGs
present on the 450 K array using previously measured 450 K
methylation data from 400 BEST participants. Ten CpGs repli-
cated with consistent direction of association in BEST (p<0:05)
(Table 2). Among the urinary arsenic–associated CpGs discov-

Table 1. Subcohort descriptive statistics [median (25th, 75th percentiles) or n (%)] for HEALS (discovery) and BEST (validation).

HEALS cohort (n=11,224) HEALS subcohort (discovery; n=396) BEST subcohort (validation; n=400)

Age (years) 36.0 (29.0,45.0) 36.5 (30.0, 45.0) 44.0 (35.0, 50.3)
Urinary arsenic (lg=g) 199.0 (106.0, 352.0) 201.5 (113.5, 350.0) 137.3 (76.2, 394.4)
Water arsenic (lg=L) 60.0 (12.0,147.0) 50.5 (11.0, 124.8) Not measured
Sex
Male 4,855 (43.3%) 167 (42.2%) 212 (53.0%)
Female 6,369 (56.7%) 229 (57.8%) 188 (47.0%)
Smoking
Never 7,204 (64.2%) 240 (60.6%) 251 (62.8%)
Former 743 (6.6%) 21 (5.3%) 40 (10.0%)
Current 3,271 (29.1%) 135 (34.1%) 109 (27.3%)
Unknown 6 (0.1%) 0 (0.0%) 0 (0.0%)
BMI (kg=m2)
Normal (18.5–22.9) 5,067 (45.1%) 175 (44.2%) 176 (44.0%)
Underweight (<18:5) 4,421 (39.4%) 154 (38.9%) 150 (37.5%)
Overweight (23.0–29.9) 1,575 (14.0%) 61 (15.4%) 73 (18.3%)
Obese (≥30) 80 (0.7%) 5 (1.3%) 1 (0.3%)
Unknown 81 (0.7%) 1 (0.3%) 0 (0.0%)

Note: BEST, Bangladesh Vitamin E and Selenium Trial; BMI, body mass index; HEALS, Health Effects of Arsenic Longitudinal Study.
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ered in HEALS at the p=10−5 threshold (n=67), 26 CpGs were
measured in BEST (Figure 2; Excel Table S1). Among these 26
CpGs, 15 (58%) were associated with urinary arsenic (p<0:05),
and 14 (93%) were directionally consistent in BEST.

Water Arsenic–Associated DNAMethylation in HEALS
To examine whether urinary arsenic–associated CpGs were con-
sistent across different exposure assessments of arsenic, we exam-
ined arsenic in drinking water and its association with genome-
wide methylation. Both water and urinary arsenic were measured
in HEALS, and the correlation between the two measures was
0.61 (p<10−16) (Figure S3). Four CpGs passed a Bonferroni
threshold (p<6:5× 10−8) when we assessed associations with
log2-transformed water arsenic (Figures S4; Figure S5; Excel
Table S2). At an FDR of 0.05, 24 water arsenic–associated CpGs
were identified. Among the urinary arsenic–associated CpGs
(n=34, FDR<0:05), all 34 CpGs were associated with water ar-
senic (i.e., p<0:05 and consistent direction), and eight were asso-
ciated at a FDR of 0.05. When we examined all CpG methylation
and arsenic associations across the epigenome for both water and
urine, the correlation between the − log10ðp-valuesÞ and direction
of association was 0.67 (p<10−16), mirroring the correlation we
observed between the two exposures (Figure 3).

Arsenic-Associated Regions in HEALS
To identify regions of DNA methylation associated with urinary
arsenic, we searched for DMRs using the DMRcate method. We
identified 45 DMRs with minFDR<10−4 (Figure 4A; Table S3).
Eight CpGs individually associated with urinary arsenic
(p<6:5× 10−8) annotated to six of these DMRs based on region
start and end locations (see CpG location in Table 2). The average
methylation decreased with increased urinary arsenic in 64.4%
(n=29) of these DMRs. Most DMRs (82.2%; n=37) contained
CpGs annotated to a gene; however, we also identified eight inter-
genic DMRs. Among the DMRs that annotated to a gene, the
DMRs most frequently spanned promoters (n=19), gene bodies
(n=17), and 50UTRs (n=11). The top three DMRs were a)
upstream of ABR on chromosome 17 (minFDR=6:4× 10−26),

overlapping an enhancer region (Figure 4B); b) in the body of
SEMA4G on chromosome 10 (minFDR=6:7× 10−20), overlap-
ping a weak promoter (Figure 4C); and c) a region within the
NSMF gene on chromosome 9 (minFDR=6:7× 10−20), overlap-
ping an enhancer region (Figure 4D). All three regions spanned a
DNase cluster region. The mean effect size related to the
log2-transformed arsenic-associated change in DNA methylation
(beta values) across the DMR was −0:008 for ABR, −0:003 for
SEMA4G, and −0:005 for NSMF.

Enrichment of Arsenic-Associated CpGs within Genomic
Features and Gene Sets
We examined the enrichment of arsenic-associated CpGs within
promoters, enhancers, TFBS, and DHS regions. Arsenic-
associated CpGs (FDR<0:05) were enriched in shores and
depleted in islands compared with CpGs not associated with ar-
senic (p=3:9× 10−3) [see “Discovery (EPIC)” in Figure 5A].
We observed no enrichment/depletion of arsenic-associated
CpGs in gene regions, promoters, TFBS, and enhancers.
Arsenic-associated CpGs were 29% more likely to be annotated to
DHS regions (p=0:04) [see “Discovery (EPIC)” in Figure 5B].

GSEA was applied to the urinary arsenic–associated CpGs
discovered in HEALS. No gene sets were enriched among the
genes annotated to the arsenic-associated CpGs at FDR of 0.05
(21 unique genes). We assessed enrichment of hallmark gene sets
among the genes that annotated to our top 500 arsenic-associated
CpGs (348 unique genes) (see “HEALS” in Table 3) and
observed enrichment for genes annotated to the tumor necrosis
factor a (TNFa) signaling via NFjB hallmark (seven genes;
p=0:02), cholesterol homeostasis (four genes; p=0:01), and
angiogenesis (three genes; p=6:4× 10−3). Among KEGG path-
ways, the hematopoietic cell lineage pathway was significantly
enriched (four genes; p=0:04) (Table S4).

Meta-Analysis of Urinary Arsenic and Genome-Wide DNA
Methylation in HEALS and BEST
We conducted a meta-analysis of 390,810 CpGs measured in
both HEALS and BEST (see Figure S6 and Figure S7 for full

Figure 1. Genome-wide associations between urinary arsenic concentration and CpG site–specific methylation in the Health Effects of Arsenic Longitudinal
Study (HEALS). Using the EPIC (850K) array, the association between log2-transformed urinary arsenic (creatinine adjusted) and methylation was evaluated
at 771,192 CpG sites across 396 individuals from HEALS. (A) Manhattan plot of the chromosomal location and p-value for each CpG–arsenic association.
(B) Volcano plot presenting association estimate and p-value for each CpG–arsenic association. Colors correspond to CpG relationship to island. In (A) and
(B), solid and dashed lines designate the Bonferroni threshold (p=6:5× 10−8) and false discovery rate (FDR) 0.05 threshold (p=2:0× 10−6), respectively.
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results) to more robustly identify urinary arsenic–associated CpGs.
This meta-analysis identified 41 CpGs passing the Bonferroni thresh-
old (p<1:3× 10−7) (Figure 6; Table 4). At an FDR of 0.05, 221 uri-
nary arsenic–associated CpGs were identified, and all had consistent
direction of association in each study (p<2:8× 10−5) (Excel Table
S3). Among the 41 arsenic-associated CpGs (p<1:3× 10−7), 34
(82.9%) were negatively associated with increased exposure, and
this pattern of hypomethylation with increased arsenic persisted
among associated CpGs with FDR of 0.05 (n=170, 76.9%) (Table
4). Our top two arsenic-associated CpGs were located upstream
of ABR (cg01912040, cg10003262). The remaining CpGs of the
top 10 CpGs annotated to the upstream region of SEMA4G
(cg05962511), C19orf66 promoter (cg13480898), EFNA1 (ephrin
A1) gene body (cg07207669), SQSTM1 (sequestosome 1) 5’UTR
(cg01225779), EML2 (echinoderm 486 microtubule associated pro-
tein like 2) gene body (cg06381803), UNKL (unk like zinc finger)
TSS200 (cg09183146), MYEOV (myeloma overexpressed) pro-
moter (cg08759026), and SPSB1 (splA/ryanodine receptor domain
and SOCS box containing 1) 5’UTR (cg17489312).

Among the BEST participants, gene expression data was avail-
able for 26 of the 28 genes that annotated to our urinary arsenic–
associated CpGs (p<1:3× 10−7) (Table S5). At a threshold of
p=0:05, methylation was positively correlated with gene expression
for four genes: RNF144A (ring finger protein 144A) (cg19240637;
p=1:9× 10−5), C19orf66 (cg13480898; p=1:6× 10−3), SEMA5B
(semaphorin 5B) (cg02306995; p=0:035), and NELF (negative
elongation factor) (cg04622454; p=0:031). Inverse correlations
between methylation and expression were observed for five CpGs in
four genes: EML2 (cg06381803; p= 0:039), FCER2 (Fc fragment
of IgE receptor II) (cg12261095; p=0:010), B3GALT5 (beta-1,3-
galactosyltransferase 5) (cg26390598; p=0:035), and LCN8 (lipoca-
lin 8) (cg14145338; p=7:0× 10−4 and cg13764516; p=6:4×

10−3). After adjustment for age and sex, six of the nine associations
between expression and methylation persisted (p<0:05). Among the
HEALS participants, genotyping information was available for 389
participants, and we examined whether the top arsenic-associated
CpGs identified in the meta-analysis (n=41) were associated with
genetic variants (within 1 megabase window) (Table S6). Twenty-
five out of the 41 arsenic-associated CpGs had one or more cis-
mQTL pairs (FDR<0:01), suggesting that these CpGs and the
genetic variants that influence their methylation status could be fur-
ther explored in gene environment studies.

We attempted replication of the arsenic-associated CpGs
identified in this meta-analysis in a group of Andean women
from Argentina, who were exposed to arsenic via drinking water,
(n=93) with DNA methylation measured on the 450K array, as
previously described by Ameer et al. (2017). Among the arsenic-
associated CpGs from the meta-analysis (n=217), only 16 CpGs
were associated with urinary arsenic (p<0:05) among the
Andean women and 13 (81.3%) with consistent direction of asso-
ciation (Excel Table S4). While these results suggest some con-
sistency among the arsenic-associated CpGs identified in our
study, there is heterogeneity with respect to study population,
sample size, study design, and analysis approach.

Enrichment of Arsenic-Associated CpGs (from
Meta-Analysis) in Genomic Features and Gene Sets
Similar to our discovery analysis in HEALS using the EPIC
array, we examined enrichment of genomic features among the
urinary arsenic–associated CpGs identified in the meta-analysis.
Arsenic-associated CpGs identified in the meta-analysis were
enriched in shores and non-CpG islands and depleted in islands
compared with CpGs not associated with arsenic (p=7:9× 10−8)
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Figure 2. Associations between urinary arsenic and CpG methylation discovered in the Health Effects of Arsenic Longitudinal Study (HEALS) and tested for
replication in the Bangladesh Vitamin E and Selenium Trial (BEST). Using results from BEST, we attempted to validate 26 arsenic-associated CpGs that anno-
tated to 450K array among the 67 CpGs identified using the EPIC array in HEALS (p<10−5). The BEST results consisted of associations between
log2-transformed urinary arsenic and methylation evaluated for 390,810 CpGs using data on 400 BEST participants with existing 450K array data. Horizontal
dashed line represents − log10ðp=0:05Þ, and solid vertical line corresponds to − log10½false discovery rate ðFDRÞ<0:05�. Direction of association summarizes
whether results from the cohorts are both positive (triangle), both negative (square), or inconsistent (directions of association differ) (circle). The corresponding
results data are presented in Table 2 and Excel Table S1.
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(Figure 5A). Arsenic-associated CpGs were depleted in pro-
moters (p=1:1× 10−3) and enriched in DHS regions (p=
2:2× 10−7) (Figure 5B). Notably, arsenic-associated CpGs were
2.6-fold more likely to be located within enhancers compared with
CpGs not associated with arsenic (p=1:2× 10−3). When we strati-
fied by the direction of association, the genomic enrichment in
DHS regions and enhancers and depletion in promoters persisted
among negatively arsenic-associated CpGs (see Figure S8).

GSEA was applied to the urinary arsenic–associated
CpGs identified in the meta-analysis among the associated CpGs
with FDR of 0.05 (153 unique genes) and among the top 500
arsenic-associated CpGs (338 unique genes). Among both sets of
arsenic-associated CpGs, we observed enrichment of genes anno-
tating to the PI3K=AKT=mTOR, allograft rejection, reactive oxy-
gen species pathway, inflammatory response, and TNFa signaling
via NFjB hallmarks (p<0:05) (Table 3). We observed enrich-
ment of 13 KEGG pathways among the arsenic-associated CpGs
with FDR of 0.05 (Table S4). Among the top 500 arsenic-
associated CpGs, genes in this set annotated to KEGG pathways
related to cell adhesion molecules (CAMs) (nine genes; p=
2:9× 10−3), mitogen-activated protein kinase signaling pathway
(14 genes; p=0:013), estrogen signaling pathway (eight genes;
p=0:015), hematopoietic cell lineage (four genes; p=0:038), cys-
teine and methionine metabolism (three genes; p=0:048), and
NFjB signaling pathway (five genes; p=0:029).

Discussion
This EWAS of arsenic exposure provides evidence that arsenic
exposure is associated with DNA methylation levels at specific

CpG sites in the leukocytes of Bangladeshi adults. In our discov-
ery analysis, we identified 34 novel CpGs associated with arsenic
exposure assessed in urine in HEALS prior to any arsenic mitiga-
tion efforts. Sixteen of these novel arsenic-associated CpGs were
also present on the 450 K array, and ten replicated in an inde-
pendent cohort (BEST). For the 34 novel arsenic-associated
CpGs observed in HEALS, results for arsenic exposure measured
in drinking water were highly consistent with results based on
urinary arsenic. Our meta-analysis of HEALS and BEST identi-
fied 221 CpGs associated with arsenic exposure assessed in urine
in Bangladeshi adults. Arsenic-associated CpGs were more likely
to be hypomethylated and were enriched in CpG shores, DHS
regions, and enhancers.

Our results are relevant to understanding how arsenic impacts
the epigenome and how alteration of the epigenome may be a
mechanism involved in arsenic toxicity. Among our top CpGs
from both the discovery analysis and meta-analysis, we observed
that higher arsenic exposure tends to be associated with hypome-
thylation, a phenomenon not observed in prior studies (Ameer
et al. 2017; Argos et al. 2015; Liu et al. 2014; Seow et al. 2014),
potentially due to the increased coverage of the EPIC array of
intergenic and non-promoter regulatory genomic regions com-
pared with the 450 K array. While the prior adult EWAS of
arsenic exposure identified more CpGs associated with hyper-
methylation than hypomethylation (Argos et al. 2015; Liu et al.
2014), arsenic exposure was associated with decreased global meth-
ylation, assessed using the ½3H�-methyl incorporation assay in
Bangladeshi adults (Niedzwiecki et al. 2013). In addition, methyla-
tion is more variable in CpG shores and may be more susceptible to
changes due to environmental exposures such as arsenic (Jones

Figure 3. Comparison between the associations of urinary arsenic and water arsenic with genome-wide methylation in the Health Effects of Arsenic
Longitudinal Study (HEALS). The direction of association and − log10ðpÞ for each CpG–arsenic association are plotted for urinary (x-axis) and water (y-axis)
(both log2 transformed). Solid lines and dashed lines designate − log10ðp=1Þ and − log10ðp=0:05Þ, respectively. CpGs highlighted in blue diamonds denote
log2-transformed urinary arsenic–associated sites [false discovery rate ðFDRÞ<0:05]. Pearson’s correlation between all urinary and water arsenic CpG associa-
tions was 0.67 (p<10−16).
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2012). While the location of arsenic-associated CpG methylation in
relation to CpG islands needs to be further studied, arsenic-
associated CpGs were enriched in CpG shores in the cord blood
from low-exposed infants (Koestler et al. 2013) and in non-CpG
island regions in the umbilical artery and placenta from Bangladeshi
infants (Cardenas et al. 2015a). A meta-analysis of maternal smok-
ing and genome-wide methylation in cord blood observed similar
enrichment in CpG shores and within enhancers and DHS regions
and depletion in CpG islands and promoter regions (Joubert et al.
2016).

While the mechanisms for alteration of DNA methylation in
blood by arsenic remains to elucidated, two proposed mech-
anisms involve the influence of arsenic: a) on the expression or
function of DNA methyltransferases, potentially resulting in less
downstream site-specific methylation; or b) on consumption of
methyl groups during arsenic metabolism, resulting in depletion
of methyl groups available to DNA methyltransferase, affecting

DNA methylation synthesis (Eckstein et al. 2017). In addition, it
is possible that specific genes are expressed in response to arsenic
exposure, and the induction of these genes may change the local
epigenetic state, including DNA methylation. Arsenic-associated
methylation in DHS regions and enhancers warrants further ex-
ploration in both experimental and genome-wide methylation
studies.

In our discovery and replication analysis, two of the top CpGs
were located upstream of the ABR gene, encoding the active
BCR-related protein. ABR is a regulator of the RHO family of
small GTPases, signaling proteins involved in cytosketal dynam-
ics, and a paralog of the BCR (BCR activator of RhoGEF and
GTPase) gene. ABR has a GTPase-activating protein domain and
may be important in cellular signaling and immune processes
(Cho et al. 2007; Chuang et al. 1995; Cunnick et al. 2009). In
addition, ABR may have a pivotal role in human embryonic stem
cell mitosis, suggesting that ABR may be important for
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maintaining the genomic integrity and renewal of stem cells
(Ohgushi et al. 2017). A study of newborns (n=38) in the
Biomarkers of Exposure to Arsenic (BEAR) pregnancy cohort
from Mexico identified two CpGs also negatively associated with
maternal water arsenic in the ABR gene body (Rojas et al. 2015).
Arsenic increased ABR expression in an in vitro study of arsenic
exposure in human epidermal keratinocytes (Perez et al. 2008).
No prior methylation or experimental evidence has been identi-
fied for the other discovered urinary arsenic–associated CpGs.

Among the arsenic-associated CpGs from our meta-analysis,
we observed some consistency with prior EWAS and gene
expression studies of arsenic exposure. In the BEAR pregnancy
cohort of Mexican infants, arsenic exposure was associated with
methylation at CpGs within the following genes that also anno-
tated to CpGs identified in our meta-analysis: TBC1D24 (TBC1
domain family member 24), ERC2, and PRRC2A (proline rich
coiled-coil 2A) (Rojas et al. 2015). TBC1D24 is a protein that is
hypothesized to be involved in vesicle transport and oxidative
stress response. The PRRC2A gene is within the vicinity of the
TNF-a and TNF-b encoding regions and may be involved in
inflammatory response. In a cohort of Bangladeshi infants, meth-
ylation in the first exon of ERC2 was differentially methylated
with maternal water arsenic (Kile et al. 2014). Maternal arsenic
exposure increased EML2 protein levels in the cord blood of
infants from the BEAR cohort (Bailey et al. 2014). In vitro ar-
senic exposure increased SQSTM1 and UNKL expression and
decreased SPSB1 transcript stability in human fibroblasts (Qiu
et al. 2015) and increased MCC (mutated in colorectal cancer)
expression in human epidermal keratinocytes (Perez et al. 2008).
The SQSTM1 encodes a protein that is involved in selective
autophagy and cell senescence and is within the TNF-a inflam-
matory response pathway. In Excel Table S5, we identified
arsenic-associated CpGs from the prior literature and reported the
replication results from HEALS and our meta-analysis.

There was no overlap between our identified arsenic-
associated CpGs and metal-associated CpGs reported in prior
studies of in utero exposure to mercury (Cardenas et al. 2015b),
lead (Sen et al. 2015), and cadmium (Kippler et al. 2013;
Mohanty et al. 2015; Sanders et al. 2014). A meta-analysis of in

utero cadmium exposure identified a differentially methylated
CpG (cg16768966) within GAS7, encoding growth arrest protein
7, and arsenic was also associated with methylation at this same
gene but not the same CpG (Everson et al. 2018). Overall, this
lack of overlap between arsenic-associated CpGs and CpGs asso-
ciated with other metals suggests that arsenic may have a toxicant
specific effect on the epigenome.

GSEA enabled us to identify pathways potentially affected by
arsenic-associated DNA methylation alterations in whole blood.
Our arsenic-associated CpGs annotated to genes in hallmark gene
sets related to reactive oxygen species, cancer and aging, and
inflammatory response pathways, specifically TNF-a signaling
via NFjB. Arsenic primarily undergoes biotransformation via
methylation by AS3MT but may also involve glutathione conju-
gation and other antioxidant and xenobiotic metabolizing
enzymes (Jomova et al. 2011). Arsenic exposure also induces
expression of numerous proteins involved in NFjB response,
TNF-a signaling, and inflammation in exposed infants and chil-
dren (Bailey et al. 2014; Fry et al. 2007; Smeester et al. 2017)
and adults (Dutta et al. 2015). The KEGG pathway for CAMs
also has been identified as enriched in a study of Bangladeshi
infants (Kile et al. 2014) and low-exposed U.S. adults (Liu et al.
2014). CAMs are universally important in hemostasis, immune
response, and development. Among a subset of BEST partici-
pants, baseline arsenic exposure was associated with increased
circulating CAMs at baseline and an increase in CAMs between
baseline and 6-month follow-up (Chen et al. 2007). In a study of
Bangladeshi infants, arsenic-associated CpGs were also enriched
in KEGG pathways, including hematopoietic cell lineage, cal-
cium signaling pathway, Notch signaling, and mTOR signaling
(Kile et al. 2014). While there is heterogeneity in GSEA
approaches, the results from our GSEA and prior EWAS suggest
some associations between arsenic exposure and DNA methyla-
tion may be consistent across different stages of development and
exposure levels. Within the GWAS Catalog (https://www.ebi.ac.
uk/gwas/), several variants within or near genes that annotated to
the arsenic-associated CpGs were associated with a broad range
of health traits with potential connections to arsenic exposure.
These health traits included many types of cancer, lymphocyte and
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red blood cell phenotypes and composition, pulmonary function,
and blood pressure (Table S7), suggesting that genetic variation
and potentially epigenetic variation in these genes may contribute
to the risk of arsenic-associated disease and health traits.

A major strength of our study was the large sample size, with
∼ 400 individuals in both the discovery and replication datasets,
resulting in 796 arsenic-exposed adults for meta-analysis. Utilizing
methylation data from BEST, we were able to conduct replication
analyses, enabling us to validate discovered associations between
urinary arsenic and CpG methylation. Our meta-analysis increased
the power to detect putative arsenic-associated CpGs that can be
examined in future studies. The EPIC array measures methylation
at almost twice the number of CpGs compared with the 450 K

array used in prior studies and improves coverage within intergenic
regions, enhancers, and distal regulatory elements (Pidsley et al.
2016). In HEALS, water and urinary arsenic were assessed at base-
line prior to interventions to remediate exposure; thus, these meas-
ures are likely to represent historical exposure status, allowing us
to potentially identify CpGs associated with long-term exposure,
as opposed to more acute responses to exposure. The exposure
range in both HEALS and BEST participants was wide, enabling
us to evaluate a broad spectrum of environmental arsenic exposure
and its effect on genome-wide methylation.

Several limitations must be considered when interpreting the
results of our study. While urinary arsenic is the most common
biomarker of recent arsenic exposure, sampling and interindividual

Table 3. Results from gene set enrichment analysis of hallmark gene set collection (n=54 sets) among the urinary arsenic–associated CpGs identified in the
HEALS discovery analysis (n=396) and meta-analysis of HEALS and BEST (n=796).

Top 500 arsenic-associated CpGsa Arsenic-associated CpGs below FDR<0:05b

n Genes p Genes p

HEALS
Angiogenesis 36 3 6:4× 10−3 — —
Cholesterol homeostasis 74 4 1:2× 10−2 — —
TNFa signaling via NFjB 200 7 2:1× 10−2 — —
META-ANALYSIS
Allograft rejection 200 9 2:2× 10−3 4 1:9× 10−2

PI3K=AKT=mTOR 105 6 9:8× 10−3 3 2:2× 10−2

Reactive oxygen species pathway 49 3 1:4× 10−2 2 9:1× 10−3

Inflammatory response 200 6 2:9× 10−2 3 4:4× 10−2

TNFa signaling via NFjB 200 7 4:1× 10−2 4 3:1× 10−2

Estrogen response early 200 10 1:1× 10−2 — —
UV response up-regulated 158 7 1:4× 10−2 — —
MTORC1 signaling 200 — — 4 1:8× 10−2

Oxidative phosphorylation 200 — — 3 3:1× 10−2

MYC targets V1 200 — — 3 4:7× 10−2

Apical junction 200 — — 4 4:8× 10−2

Note: Gene annotations for arsenic-associated CpGs are provided as gene set input for the gometh function. Results are presented for hallmark gene sets (n=54 sets) with at least two
genes from arsenic-associated CpG gene set and enrichment (p<0:05). Background gene set for 450 K is 19,246 genes, and EPIC is 23,234 genes. The table reports total number of
genes in set (n), genes identified in pathway from CpG gene set, and p-value from CpG bias-corrected hypergeometric test. —, no data; BEST, Bangladesh Vitamin E and Selenium
Trial; FDR, false discovery rate; HEALS, Health Effects of Arsenic Longitudinal Study; TNFa, tumor necrosis factor a.
aTop 500 arsenic-associated CpGs, annotated to 348 unique genes in the HEALS discovery analysis (EPIC array), 338 unique genes in the meta-analysis (450 K array).
bArsenic-associated CpGs (FDR<0:05), annotated to 21 unique genes in the discovery analysis, 153 unique genes in the meta-analysis.

Figure 6. Epigenome-wide meta-analysis of associations between urinary arsenic and DNA methylation in Bangladeshi adults using data from the Health
Effects of Arsenic Longitudinal Study (HEALS) and the Bangladesh Vitamin E and Selenium Trial (BEST). Using data from EPIC (HEALS; n=396) and
450K (BEST; n=400) arrays, 390,810 CpG sites were meta-analyzed using METAL [summary statistics from covariate- and surrogate variable (SV)–adjusted
model were provided as input]. (A) Q-Q plot of the observed distribution of meta-analysis p-values. The red line represents expected distribution of p-values
under the null, and k corresponds to the genomic inflation factor (see “Methods” section). (B) Manhattan plot of the location of each CpG and p-value for each
CpG–arsenic association. Solid and dashed lines designate the Bonferroni threshold (p=1:3× 10−7) and false discovery rate (FDR) 0.05 threshold
(p=2:8× 10−5), respectively.
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factors, such as age, sex, and metabolism, can contribute to vari-
ation in urinary arsenic measurements (Marchiset-Ferlay et al.
2012). Unmeasured confounding, from unknown biologic and
technical variation, and measurement error can also potentially
bias our results. DNA methylation was measured in whole
blood, and the associations we observed in blood may not be
present in other tissues. The EPIC array measures methylation
at ∼ 3% of CpGs in the genome (Stevens et al. 2013) and is bi-
ased toward gene regions, and DMR analysis preferentially
identifies DMRs in gene regions since intergenic CpGs are
more sparsely distributed on the array (Peters et al. 2015). We
currently cannot replicate results for CpGs specific to the EPIC
array. The association between gene expression and methyla-
tion (measured on EPIC) cannot be assessed in HEALS since
RNA is not available. Genetic background can influence DNA
methylation, and the arsenic–CpG associations observed in this
work may not be present in other arsenic-exposed populations
due to genetic differences (Bell et al. 2011; McRae et al. 2014).
Even among our significant arsenic-associated CpGs, the effect
sizes of the associations between arsenic and DNA methylation
at CpGs are small, and it is unknown whether these small
effects have functional consequences.

Future studies using the EPIC array (or more comprehensive
measurement technologies) will be necessary to confirm the novel
CpGs we identified and the enrichment of arsenic-associated
CpGs among CpG shores and enhancers. Other factors, such as
individual genetic susceptibility to arsenic exposure and timing
and duration of arsenic exposure, need to be explored in studies of
arsenic-associated methylation. While the EPIC array enables us
to study the effect of arsenic on genic regions, we still do not
know how arsenic affects global methylation, and bisulfite
genomic sequencing approaches are needed to understand the
effect of arsenic on the global epigenome, especially in intergenic
regions. The relationship between arsenic-related variation in
DNA methylation and local histone and chromatin features require
further study, and these features likely have important implications
for regulation of arsenic response genes as well as arsenic toxicity
and disease risk. Finally, arsenic-associated CpGs identified here
and elsewhere should be explored as potential biomarkers of ar-
senic exposure, susceptibility, and toxicity. Because some of the
arsenic-associated CpGs identified in our analysis annotate to im-
portant inflammatory, oxidative response, and other cell regulation
pathways, alterations in DNA methylation may be important bio-
logic responses and/or markers of arsenic exposure that may better

Table 4. CpGs Associated with log2-transformed urinary arsenic (p<1:3× 10−7) from meta-analysis of HEALS (n=396) and BEST (n=400).

Name Chr Position CpG location Nearest gene Feature Distance (basepairs) Direction of association p

cg01912040 17 1106553 Shore ABR Upstream 15,937 ## 3:3× 10−17

cg10003262 17 1106589 Shore ABR Upstream 15,973 ## 1:9× 10−15

cg05962511 10 102730022 Shore SEMA4G Body 732 ## 2:1× 10−13

cg13480898 19 10195914 Shore C19orf66 Promoter 892 ## 4:1× 10−13

cg07207669 1 155102388 Shore EFNA1 Body 2,039 ## 3:0× 10−12

cg01225779 5 179238472 Shelf SQSTM1 5'UTR 4,148 ## 1:0× 10−11

cg06381803 19 46119475 Island EML2 Body 29,300 ## 4:8× 10−11

cg09183146 16 1429863 Island UNKL Promoter 34,842 ## 1:4× 10−10

cg08759026 11 69061454 Non-CpG island MYEOV Promoter 159 ## 2:8× 10−10

cg17489312 1 9376039 Non-CpG island2 SPSB1 5'UTR 23,098 ## 2:9× 10−10

cg00472758 16 2552820 Shelf TBC1D24 3'UTR 4,581 ## 5:6× 10−10

cg05428706 10 102730130 Shore SEMA4G Inside 840 ## 5:8× 10−10

cg05425326 16 58439361 Non-CpG island GINS3 3'UTR 13,063 "" 6:1× 10−10

cg26435149 3 55605611 Non-CpG island ERC2 3'UTR 896,780 ## 7:3× 10−10

cg17393635 19 49843565 Island CD37 Body 4,888 ## 1:2× 10−9

cg13223043 1 26492308 Shore FAM110D Upstream 3,189 ## 2:5× 10−9

cg03871754 17 79320652 Island TMEM105 Upstream 16,178 ## 3:3× 10−9

cg19240637 2 7172297 Island RNF144A Body 114,774 ## 3:7× 10−9

cg07782285 19 13085442 Non-CpG island DAND5 3'UTR 5,118 ## 7:5× 10−9

cg26390598 21 41032396 Non-CpG island B3GALT5 5'UTR 3,142 "" 1:0× 10−8

cg04622454 9 140349128 Shore NELF Body 4,658 ## 1:1× 10−8

cg22959742 10 13913931 Non-CpG island FRMD4A Body 136,229 "" 1:3× 10−8

cg00281776 2 209224225 Shore PTH2R Promoter 344 ## 1:8× 10−8

cg12261095 19 7764345 Non-CpG island FCER2 Body 2,687 ## 2:0× 10−8

cg14718533 10 33355576 Non-CpG island ITGB1 Upstream 108,283 "" 2:1× 10−8

cg04459545 19 17375685 Non-CpG island USHBP1 Promoter 61 ## 3:1× 10−8

cg14145338 9 139649039 Non-CpG island LCN8 Body 3,692 ## 3:3× 10−8

cg04920032 12 50262986 Non-CpG island FAIM2 3'UTR 34,774 ## 3:5× 10−8

cg18413900 12 58160989 Shore CYP27B1 Promoter 13 "" 3:6× 10−8

cg01757312 13 112720565 Island SOX1 Promoter 1,348 "" 3:7× 10−8

cg05816193 6 26018127 Shelf HIST1H1A Promoter 87 ## 4:4× 10−8

cg07367302 1 19967428 Shelf MINOS-NBL1 Body 43,957 ## 4:6× 10−8

cg02306995 3 122635049 Shelf SEMA5B Body 111,610 ## 5:5× 10−8

cg24318728 17 39649283 Non-CpG island KRT36 Downstream 484 ## 5:9× 10−8

cg04875062 1 17305562 Shore MFAP2 5'UTR 2,519 ## 6:0× 10−8

cg13764516 9 139648911 Non-CpG island LCN8 3'UTR 3,820 ## 6:5× 10−8

cg23050300 1 3281321 Non-CpG island PRDM16 Body 295,579 ## 8:4× 10−8

cg18050715 13 97996992 Shore MBNL2 Body 69,106 "" 8:7× 10−8

cg04826368 6 27130208 Non-CpG island HIST1H2AH Upstream 14,867 ## 1:0× 10−7

cg08596618 1 24275885 Non-CpG island SRSF10 Downstream 31,068 ## 1:1× 10−7

cg27092191 16 31884699 Shore ZNF267 Promoter 380 ## 1:2× 10−7

Note: Results from meta-analysis are shown CpGs associated with log2-transformed urinary arsenic (creatinine adjusted) (p<1:3× 10−7). Meta-analysis was conducted using the
METAL software, and summary statistics from the covariate- and surrogate variable (SV)–adjusted models for HEALS and BEST were provided as input. Direction of association
indicated by arrows for HEALS and BEST, and downward and upward arrows correspond to inverse and positive association with increasing arsenic exposure. UCSC gene annotation
provided by Illumina. BEST, Bangladesh Vitamin E and Selenium Trial; Chr, chromosome; HEALS, Health Effects of Arsenic Longitudinal Study.
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inform our understanding of and predict arsenic-associated health
effects and disease.

Conclusions
Among Bangladeshi adults chronically exposed to arsenic via
drinking contaminated water from tube wells, we identified novel
and reproducible arsenic-associated DNA methylation alterations
in blood. Our meta-analysis that combines our results with a prior
study identified additional CpGs showing a putative association
with arsenic exposure. Arsenic-associated CpGs annotated to
genes involved in TNFa signaling via NFjB, CAMs, inflamma-
tory processes, and important signaling pathways in cancer and
aging. The implications of these arsenic-associated CpGs for ex-
posure and risk assessment and potential toxicity prevention
should be further investigated.

Acknowledgments
We acknowledge fellowship support for Dr. Demanelis

provided by the National Institute on Aging (NIA) Specialized
Demography and Economics of Aging Training Program
(2T32AG000243) at the University of Chicago. Research support
for this project is provided by active and past National Institutes of
Health (NIH) grants (R01ES020506, R35ES028379, P42ES010349,
R01CA102484, R01CA107431, P30CA014599, P30ES027792).
We would like to acknowledge the HEALS and BEST study
participants and research staff for their contributions to these cohorts
and Dr. M. Kibriya for his contributions to generating the DNA
methylation data utilized in this analysis.

References
Ahsan H, Chen Y, Parvez F, Argos M, Hussain AI, Momotaj H, et al. 2006a. Health

effects of arsenic longitudinal study (HEALS): description of a multidisciplinary
epidemiologic investigation. J Expo Sci Environ Epidemiol 16(2):191–205, PMID:
16160703, https://doi.org/10.1038/sj.jea.7500449.

Ahsan H, Chen Y, Parvez F, Zablotska L, Argos M, Hussain I, et al. 2006b. Arsenic
exposure from drinking water and risk of premalignant skin lesions in
Bangladesh: baseline results from the health effects of arsenic longitudinal
study. Am J Epidemiol 163(12):1138–1148, PMID: 16624965, https://doi.org/10.
1093/aje/kwj154.

Ahsan H, Perrin M, Rahman A, Parvez F, Stute M, Zheng Y, et al. 2000. Associations
between drinking water and urinary arsenic levels and skin lesions in
Bangladesh. J Occup Environ Med 42(12):1195–1201, PMID: 11125683,
https://doi.org/10.1097/00043764-200012000-00016.

Ameer SS, Engstrom K, Hossain MB, Concha G, Vahter M, Broberg K. 2017.
Arsenic exposure from drinking water is associated with decreased gene
expression and increased DNA methylation in peripheral blood. Toxicol Appl
Pharmacol 321:57–66, PMID: 28242323, https://doi.org/10.1016/j.taap.2017.02.019.

Anawar HM, Akai J, Mostofa KM, Safiullah S, Tareq SM. 2002. Arsenic poisoning
in groundwater: health risk and geochemical sources in Bangladesh. Environ Int
27(7):597–604, PMID: 11871394, https://doi.org/10.1016/S0160-4120(01)00116-7.

Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, et al.
2014. An atlas of active enhancers across human cell types and tissues. Nature
507(7493):455–461, PMID: 24670763, https://doi.org/10.1038/nature12787.

Argos M. 2015. Arsenic exposure and epigenetic alterations: recent findings based
on the Illumina 450k DNA methylation array. Curr Environ Health Rep 2(2):137–
144, PMID: 26231363, https://doi.org/10.1007/s40572-015-0052-1.

Argos M, Chen L, Jasmine F, Tong L, Pierce BL, Roy S, et al. 2015. Gene-specific
differential DNA methylation and chronic arsenic exposure in an epigenome-
wide association study of adults in Bangladesh. Environ Health Perspect
123(1):64–71, PMID: 25325195, https://doi.org/10.1289/ehp.1307884.

Argos M, Kalra T, Rathouz PJ, Chen Y, Pierce B, Parvez F, et al. 2010. Arsenic expo-
sure from drinking water, and all-cause and chronic-disease mortalities in
Bangladesh (HEALS): a prospective cohort study. Lancet 376(9737):252–258,
PMID: 20646756, https://doi.org/10.1016/S0140-6736(10)60481-3.

Argos M, Rahman M, Parvez F, Dignam J, Islam T, Quasem I, et al. 2013. Baseline
comorbidities in a skin cancer prevention trial in Bangladesh. Eur J Clin Invest
43(6):579–588, PMID: 23590571, https://doi.org/10.1111/eci.12085.

Aulchenko YS, Ripke S, Isaacs A, van Duijn CM. 2007. GenABEL: an R library for
genome-wide association analysis. Bioinformatics 23(10):1294–1296, PMID:
17384015, https://doi.org/10.1093/bioinformatics/btm108.

Bailey KA, Fry RC. 2014. Arsenic-associated changes to the epigenome: what are
the functional consequences? Curr Environ Health Rep 1:22–34, PMID:
24860721, https://doi.org/10.1007/s40572-013-0002-8.

Bailey KA, Laine J, Rager JE, Sebastian E, Olshan A, Smeester L, et al. 2014.
Prenatal arsenic exposure and shifts in the newborn proteome: interindividual
differences in tumor necrosis factor (TNF)-responsive signaling. Toxicol Sci
139(2):328–337, PMID: 24675094, https://doi.org/10.1093/toxsci/kfu053.

Bell JT, Pai AA, Pickrell JK, Gaffney DJ, Pique-Regi R, Degner JF, et al. 2011. DNA
methylation patterns associate with genetic and gene expression variation in
HapMap cell lines. Genome Biol 12(1):R10, PMID: 21251332, https://doi.org/10.
1186/gb-2011-12-1-r10.

Buja A, Eyuboglu N. 1992. Remarks on parallel analysis. Multivariate Behav Res
27(4):509–540, PMID: 26811132, https://doi.org/10.1207/s15327906mbr2704_2.

Cardenas A, Houseman EA, Baccarelli AA, Quamruzzaman Q, Rahman M, Mostofa
G, et al. 2015a. In utero arsenic exposure and epigenome-wide associations in
placenta, umbilical artery, and human umbilical vein endothelial cells.
Epigenetics 10(11):1054–1063, PMID: 26646901, https://doi.org/10.1080/15592294.
2015.1105424.

Cardenas A, Koestler DC, Houseman EA, Jackson BP, Kile ML, Karagas MR, et al.
2015b. Differential DNA methylation in umbilical cord blood of infants exposed
to mercury and arsenic in utero. Epigenetics 10(6):508–515, PMID: 25923418,
https://doi.org/10.1080/15592294.2015.1046026.

Chen Y, Santella RM, Kibriya MG, Wang Q, Kappil M, Verret WJ, et al. 2007.
Association between arsenic exposure from drinking water and plasma levels
of soluble cell adhesion molecules. Environ Health Perspect 115(10):1415–1420,
PMID: 17938729, https://doi.org/10.1289/ehp.10277.

Cheng Z, Zheng Y, Mortlock R, Van Geen A. 2004. Rapid multi-element analysis of
groundwater by high-resolution inductively coupled plasma mass spectrome-
try. Anal Bioanal Chem 379(3):512–518, PMID: 15098084, https://doi.org/10.1007/
s00216-004-2618-x.

Cho YJ, Cunnick JM, Yi SJ, Kaartinen V, Groffen J, Heisterkamp N. 2007. Abr and
Bcr, two homologous Rac GTPase-activating proteins, control multiple cellular
functions of murine macrophages. Mol Cell Biol 27(3):899–911, PMID: 17116687,
https://doi.org/10.1128/MCB.00756-06.

Chuang TH, Xu X, Kaartinen V, Heisterkamp N, Groffen J, Bokoch GM. 1995. Abr
and Bcr are multifunctional regulators of the Rho GTP-binding protein family.
Proc Natl Acad Sci U S A 92(22):10282–10286, PMID: 7479768, https://doi.org/10.
1073/pnas.92.22.10282.

Cortessis VK, Thomas DC, Levine AJ, Breton CV, Mack TM, Siegmund KD, et al.
2012. Environmental epigenetics: prospects for studying epigenetic mediation
of exposure-response relationships. Hum Genet 131(10):1565–1589, PMID:
22740325, https://doi.org/10.1007/s00439-012-1189-8.

Cunnick JM, Schmidhuber S, Chen G, Yu M, Yi SJ, Cho YJ, et al. 2009. Bcr and Abr
cooperate in negatively regulating acute inflammatory responses. Mol
Cell Biol 29(21):5742–5750, PMID: 19703997, https://doi.org/10.1128/MCB.
00357-09.

Dutta K, Prasad P, Sinha D. 2015. Chronic low level arsenic exposure evokes
inflammatory responses and DNA damage. Int J Hyg Environ Health
218(6):564–574, PMID: 26118750, https://doi.org/10.1016/j.ijheh.2015.06.003.

Eckstein M, Eleazer R, Rea M, Fondufe-Mittendorf Y. 2017. Epigenomic reprogram-
ming in inorganic arsenic-mediated gene expression patterns during carcino-
genesis. Rev Environ Health 32(1–2):93–103, PMID: 27701139, https://doi.org/10.
1515/reveh-2016-0025.

Everson TM, Punshon T, Jackson BP, Hao K, Lambertini L, Chen J, et al. 2018.
Cadmium-associated differential methylation throughout the placental genome:
epigenome-wide association study of two U.S. birth cohorts. Environ Health
Perspect 126(1):017010, PMID: 29373860, https://doi.org/10.1289/EHP2192.

Flanagan SV, Johnston RB, Zheng Y. 2012. Arsenic in tube well water in
Bangladesh: health and economic impacts and implications for arsenic mitiga-
tion. Bull World Health Organ 90(11):839–846, PMID: 23226896, https://doi.org/
10.2471/BLT.11.101253.

Fry RC, Navasumrit P, Valiathan C, Svensson JP, Hogan BJ, Luo M, et al. 2007.
Activation of inflammation/NF-kappaB signaling in infants born to arsenic-
exposed mothers. PLoS Genet 3(11):e207, PMID: 18039032, https://doi.org/10.
1371/journal.pgen.0030207.

Gamboa-Loira B, Cebrian ME, Franco-Marina F, Lopez-Carrillo L. 2017. Arsenic me-
tabolism and cancer risk: a meta-analysis. Environ Res 156:551–558, PMID:
28433864, https://doi.org/10.1016/j.envres.2017.04.016.

Gao J, Roy S, Tong L, Argos M, Jasmine F, Rahaman R, et al. 2015. Arsenic expo-
sure, telomere length, and expression of telomere-related genes among
Bangladeshi individuals. Environ Res 136:462–469, PMID: 25460668, https://doi.org/
10.1016/j.envres.2014.09.040.

Geeleher P, Hartnett L, Egan LJ, Golden A, Raja Ali RA, Seoighe C. 2013. Gene-set
analysis is severely biased when applied to genome-wide methylation data.
Bioinformatics 29(15):1851–1857, PMID: 23732277, https://doi.org/10.1093/
bioinformatics/btt311.

Environmental Health Perspectives 057011-13 127(5) May 2019

https://www.ncbi.nlm.nih.gov/pubmed/16160703
https://doi.org/10.1038/sj.jea.7500449
https://www.ncbi.nlm.nih.gov/pubmed/16624965
https://doi.org/10.1093/aje/kwj154
https://doi.org/10.1093/aje/kwj154
https://www.ncbi.nlm.nih.gov/pubmed/11125683
https://doi.org/10.1097/00043764-200012000-00016
https://www.ncbi.nlm.nih.gov/pubmed/28242323
https://doi.org/10.1016/j.taap.2017.02.019
https://www.ncbi.nlm.nih.gov/pubmed/11871394
https://doi.org/10.1016/S0160-4120(01)00116-7
https://www.ncbi.nlm.nih.gov/pubmed/24670763
https://doi.org/10.1038/nature12787
https://www.ncbi.nlm.nih.gov/pubmed/26231363
https://doi.org/10.1007/s40572-015-0052-1
https://www.ncbi.nlm.nih.gov/pubmed/25325195
https://doi.org/10.1289/ehp.1307884
https://www.ncbi.nlm.nih.gov/pubmed/20646756
https://doi.org/10.1016/S0140-6736(10)60481-3
https://www.ncbi.nlm.nih.gov/pubmed/23590571
https://doi.org/10.1111/eci.12085
https://www.ncbi.nlm.nih.gov/pubmed/17384015
https://doi.org/10.1093/bioinformatics/btm108
https://www.ncbi.nlm.nih.gov/pubmed/24860721
https://doi.org/10.1007/s40572-013-0002-8
https://www.ncbi.nlm.nih.gov/pubmed/24675094
https://doi.org/10.1093/toxsci/kfu053
https://www.ncbi.nlm.nih.gov/pubmed/21251332
https://doi.org/10.1186/gb-2011-12-1-r10
https://doi.org/10.1186/gb-2011-12-1-r10
https://www.ncbi.nlm.nih.gov/pubmed/26811132
https://doi.org/10.1207/s15327906mbr2704_2
https://www.ncbi.nlm.nih.gov/pubmed/26646901
https://doi.org/10.1080/15592294.2015.1105424
https://doi.org/10.1080/15592294.2015.1105424
https://www.ncbi.nlm.nih.gov/pubmed/25923418
https://doi.org/10.1080/15592294.2015.1046026
https://www.ncbi.nlm.nih.gov/pubmed/17938729
https://doi.org/10.1289/ehp.10277
https://www.ncbi.nlm.nih.gov/pubmed/15098084
https://doi.org/10.1007/s00216-004-2618-x
https://doi.org/10.1007/s00216-004-2618-x
https://www.ncbi.nlm.nih.gov/pubmed/17116687
https://doi.org/10.1128/MCB.00756-06
https://www.ncbi.nlm.nih.gov/pubmed/7479768
https://doi.org/10.1073/pnas.92.22.10282
https://doi.org/10.1073/pnas.92.22.10282
https://www.ncbi.nlm.nih.gov/pubmed/22740325
https://doi.org/10.1007/s00439-012-1189-8
https://www.ncbi.nlm.nih.gov/pubmed/19703997
https://doi.org/10.1128/MCB.00357-09
https://doi.org/10.1128/MCB.00357-09
https://www.ncbi.nlm.nih.gov/pubmed/26118750
https://doi.org/10.1016/j.ijheh.2015.06.003
https://www.ncbi.nlm.nih.gov/pubmed/27701139
https://doi.org/10.1515/reveh-2016-0025
https://doi.org/10.1515/reveh-2016-0025
https://www.ncbi.nlm.nih.gov/pubmed/29373860
https://doi.org/10.1289/EHP2192
https://www.ncbi.nlm.nih.gov/pubmed/23226896
https://doi.org/10.2471/BLT.11.101253
https://doi.org/10.2471/BLT.11.101253
https://www.ncbi.nlm.nih.gov/pubmed/18039032
https://doi.org/10.1371/journal.pgen.0030207
https://doi.org/10.1371/journal.pgen.0030207
https://www.ncbi.nlm.nih.gov/pubmed/28433864
https://doi.org/10.1016/j.envres.2017.04.016
https://www.ncbi.nlm.nih.gov/pubmed/25460668
https://doi.org/10.1016/j.envres.2014.09.040
https://doi.org/10.1016/j.envres.2014.09.040
https://www.ncbi.nlm.nih.gov/pubmed/23732277
https://doi.org/10.1093/bioinformatics/btt311
https://doi.org/10.1093/bioinformatics/btt311


Green BB, Karagas MR, Punshon T, Jackson BP, Robbins DJ, Houseman EA, et al.
2016. Epigenome-wide assessment of DNA methylation in the placenta and ar-
senic exposure in the New Hampshire Birth Cohort Study (USA). Environ
Health Perspect 124(8):1253–1260, PMID: 26771251, https://doi.org/10.1289/ehp.
1510437.

Hochberg Y, Benjamini Y. 1990. More powerful procedures for multiple significance
testing. Stat Med 9(7):811–818, PMID: 2218183, https://doi.org/10.1002/sim.
4780090710.

Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson
HH, et al. 2012. DNA methylation arrays as surrogate measures of cell mixture
distribution. BMC Bioinformatics 13:86, PMID: 22568884, https://doi.org/10.1186/
1471-2105-13-86.

Johnson WE, Li C, Rabinovic A. 2007. Adjusting batch effects in microarray expres-
sion data using empirical Bayes methods. Biostatistics 8(1):118–127, PMID:
16632515, https://doi.org/10.1093/biostatistics/kxj037.

Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, et al. 2011.
Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31:95–
107, PMID: 21321970, https://doi.org/10.1002/jat.1649.

Jones PA. 2012. Functions of DNA methylation: islands, start sites, gene bodies
and beyond. Nat Rev Genet 13(7):484–492, PMID: 22641018, https://doi.org/10.
1038/nrg3230.

Joubert BR, Felix JF, Yousefi P, Bakulski KM, Just AC, Breton C, et al. 2016. DNA
methylation in newborns and maternal smoking in pregnancy: genome-wide
consortium meta-analysis. Am J Hum Genet 98(4):680–696, PMID: 27040690,
https://doi.org/10.1016/j.ajhg.2016.02.019.

Karagas MR, Gossai A, Pierce B, Ahsan H. 2015. Drinking water arsenic contami-
nation, skin lesions, and malignancies: a systematic review of the global evi-
dence. Curr Environ Health Rep 2(1):52–68, PMID: 26231242, https://doi.org/10.
1007/s40572-014-0040-x.

Kaushal A, Zhang H, Karmaus WJJ, Ray M, Torres MA, Smith AK, et al. 2017.
Comparison of different cell type correction methods for genome-scale epige-
netics studies. BMC Bioinformatics 18(1):216, PMID: 28410574, https://doi.org/
10.1186/s12859-017-1611-2.

Kile ML, Houseman EA, Baccarelli AA, Quamruzzaman Q, Rahman M, Mostofa G,
et al. 2014. Effect of prenatal arsenic exposure on DNA methylation and leuko-
cyte subpopulations in cord blood. Epigenetics 9(5):774–782, PMID: 24525453,
https://doi.org/10.4161/epi.28153.

Kippler M, Engstrom K, Mlakar SJ, Bottai M, Ahmed S, Hossain MB, et al. 2013.
Sex-specific effects of early life cadmium exposure on DNA methylation and
implications for birth weight. Epigenetics 8(5):494–503, PMID: 23644563,
https://doi.org/10.4161/epi.24401.

Koestler DC, Avissar-Whiting M, Houseman EA, Karagas MR, Marsit CJ. 2013.
Differential DNA methylation in umbilical cord blood of infants exposed to low
levels of arsenic in utero. Environ Health Perspect 121(8):971–977, PMID:
23757598, https://doi.org/10.1289/ehp.1205925.

Lamm SH, Ferdosi H, Dissen EK, Li J, Ahn J. 2015. A systematic review and meta-
regression analysis of lung cancer risk and inorganic arsenic in drinking
water. Int J Environ Res Public Health 12(12):15498–15515, PMID: 26690190,
https://doi.org/10.3390/ijerph121214990.

Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. 2012. The sva package for
removing batch effects and other unwanted variation in high-throughput
experiments. Bioinformatics 28(6):882–883, PMID: 22257669, https://doi.org/10.
1093/bioinformatics/bts034.

Leek JT, Storey JD. 2007. Capturing heterogeneity in gene expression studies by
surrogate variable analysis. PLoS Genet 3(9):1724–1735, PMID: 17907809,
https://doi.org/10.1371/journal.pgen.0030161.

Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR. 2010. MaCH: using sequence and
genotype data to estimate haplotypes and unobserved genotypes. Genet
Epidemiol 34(8):816–834, PMID: 21058334, https://doi.org/10.1002/gepi.20533.

Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. 2015.
The molecular signatures database (MSigDB) hallmark gene set collection.
Cell Syst 1(6):417–425, PMID: 26771021, https://doi.org/10.1016/j.cels.2015.12.
004.

Liu X, Zheng Y, Zhang W, Zhang X, Lioyd-Jones DM, Baccarelli AA, et al. 2014.
Blood methylomics in response to arsenic exposure in a low-exposed US popula-
tion. J Expo Sci Environ Epidemiol 24(2):145–149, PMID: 24368509, https://doi.org/
10.1038/jes.2013.89.

Marchiset-Ferlay N, Savanovitch C, Sauvant-Rochat MP. 2012. What is the best
biomarker to assess arsenic exposure via drinking water? Environ Int
39(1):150–171, PMID: 22208756, https://doi.org/10.1016/j.envint.2011.07.015.

Martin TC, Yet I, Tsai PC, Bell JT. 2015. coMET: visualisation of regional
epigenome-wide association scan results and DNA co-methylation patterns.
BMC Bioinformatics 16:131, PMID: 25928765, https://doi.org/10.1186/s12859-015-
0568-2.

Martin EM, Fry RC. 2018. Environmental influences on the epigenome: exposure-
associated DNA methylation in human populations. Annu Rev Public Health

39:309–333, PMID: 29328878, https://doi.org/10.1146/annurev-publhealth-040617-
014629.

McGregor K, Bernatsky S, Colmegna I, Hudson M, Pastinen T, Labbe A, et al. 2016.
An evaluation of methods correcting for cell-type heterogeneity in DNA meth-
ylation studies. Genome Biol 17:84, PMID: 27142380, https://doi.org/10.1186/
s13059-016-0935-y.

McRae AF, Powell JE, Henders AK, Bowdler L, Hemani G, Shah S, et al. 2014.
Contribution of genetic variation to transgenerational inheritance of DNA
methylation. Genome Biol 15(5):R73, PMID: 24887635, https://doi.org/10.1186/gb-
2014-15-5-r73.

Mohanty AF, Farin FM, Bammler TK, MacDonald JW, Afsharinejad Z, Burbacher
TM, et al. 2015. Infant sex-specific placental cadmium and DNA methylation
associations. Environ Res 138:74–81, PMID: 25701811, https://doi.org/10.1016/j.
envres.2015.02.004.

Moon KA, Oberoi S, Barchowsky A, Chen Y, Guallar E, Nachman KE, et al. 2017. A
dose-response meta-analysis of chronic arsenic exposure and incident cardio-
vascular disease. Int J Epidemiol 46(6):1924–1939, PMID: 29040626, https://doi.org/
10.1093/ije/dyx202.

Naujokas MF, Anderson B, Ahsan H, Aposhian HV, Graziano JH, Thompson C, et al.
2013. The broad scope of health effects from chronic arsenic exposure: update
on a worldwide public health problem. Environ Health Perspect 121(3):295–302,
PMID: 23458756, https://doi.org/10.1289/ehp.1205875.

Navas-Acien A, Sharrett AR, Silbergeld EK, Schwartz BS, Nachman KE, Burke TA,
et al. 2005. Arsenic exposure and cardiovascular disease: a systematic review
of the epidemiologic evidence. Am J Epidemiol 162(11):1037–1049, PMID:
16269585, https://doi.org/10.1093/aje/kwi330.

Niedzwiecki MM, Hall MN, Liu X, Oka J, Harper KN, Slavkovich V, et al. 2013. A
dose-response study of arsenic exposure and global methylation of peripheral
blood mononuclear cell DNA in Bangladeshi adults. Environ Health Perspect
121(11-12):1306–1312, PMID: 24013868, https://doi.org/10.1289/ehp.1206421.

Nixon DE, Mussmann GV, Eckdahl SJ, Moyer TP. 1991. Total arsenic in urine:
palladium-persulfate vs nickel as a matrix modifier for graphite furnace atomic
absorption spectrophotometry. Clin Chem 37(9):1575–1579, PMID: 1893592.

Ohgushi M, Minaguchi M, Eiraku M, Sasai Y. 2017. A RHO small GTPase regulator
ABR secures mitotic fidelity in human embryonic stem cells. Stem Cell Reports
9(1):58–66, PMID: 28579391, https://doi.org/10.1016/j.stemcr.2017.05.003.

Perez DS, Handa RJ, Yang RS, Campain JA. 2008. Gene expression changes asso-
ciated with altered growth and differentiation in benzo[a]pyrene or arsenic
exposed normal human epidermal keratinocytes. J Appl Toxicol 28(4):491–508,
PMID: 17879257, https://doi.org/10.1002/jat.1301.

Peters TJ, Buckley MJ, Statham AL, Pidsley R, Samaras K, V Lord R, et al. 2015. De
novo identification of differentially methylated regions in the human genome.
Epigenetics Chromatin 8:6, PMID: 25972926, https://doi.org/10.1186/1756-8935-8-6.

Phipson B, Maksimovic J, Oshlack A. 2016. missMethyl: an r package for analyzing
data from Illumina's HumanMethylation450 platform. Bioinformatics 32(2):286–
288, PMID: 26424855, https://doi.org/10.1093/bioinformatics/btv560.

Pidsley R, Zotenko E, Peters TJ, Lawrence MG, Risbridger GP, Molloy P, et al. 2016.
Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for
whole-genome DNA methylation profiling. Genome Biol 17(1):208, PMID:
27717381, https://doi.org/10.1186/s13059-016-1066-1.

Pierce BL, Kibriya MG, Tong L, Jasmine F, Argos M, Roy S, et al. 2012. Genome-
wide association study identifies chromosome 10q24.32 variants associated
with arsenic metabolism and toxicity phenotypes in Bangladesh. PLoS Genet
8(2):e1002522, PMID: 22383894, https://doi.org/10.1371/journal.pgen.1002522.

Qiu LQ, Abey S, Harris S, Shah R, Gerrish KE, Blackshear PJ. 2015. Global analysis
of posttranscriptional gene expression in response to sodium arsenite. Environ
Health Perspect 123(4):324–330, PMID: 25493608, https://doi.org/10.1289/ehp.
1408626.

Ren X, McHale CM, Skibola CF, Smith AH, Smith MT, Zhang L. 2011. An emerging
role for epigenetic dysregulation in arsenic toxicity and carcinogenesis.
Environ Health Perspect 119(1):11–19, PMID: 20682481, https://doi.org/10.1289/
ehp.1002114.

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. 2015. limma powers differ-
ential expression analyses for RNA-sequencing and microarray studies. Nucleic
Acids Res 43(7):e47, PMID: 25605792, https://doi.org/10.1093/nar/gkv007.

Rojas D, Rager JE, Smeester L, Bailey KA, Drobná Z, Rubio-Andrade M, et al. 2015.
Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcy-
tosine alterations that predict functional changes in gene expression in new-
born cord blood and subsequent birth outcomes. Toxicol Sci 143(1):97–106,
PMID: 25304211, https://doi.org/10.1093/toxsci/kfu210.

Sanchez TR, Powers M, Perzanowski M, George CM, Graziano JH, Navas-Acien A.
2018. A meta-analysis of arsenic exposure and lung function: Is there evidence
of restrictive or obstructive lung disease? Curr Environ Health Rep 5(2):244–
254, PMID: 29637476, https://doi.org/10.1007/s40572-018-0192-1

Sanders AP, Smeester L, Rojas D, DeBussycher T, Wu MC, Wright FA, et al. 2014.
Cadmium exposure and the epigenome: exposure-associated patterns of DNA

Environmental Health Perspectives 057011-14 127(5) May 2019

https://www.ncbi.nlm.nih.gov/pubmed/26771251
https://doi.org/10.1289/ehp.1510437
https://doi.org/10.1289/ehp.1510437
https://www.ncbi.nlm.nih.gov/pubmed/2218183
https://doi.org/10.1002/sim.4780090710
https://doi.org/10.1002/sim.4780090710
https://www.ncbi.nlm.nih.gov/pubmed/22568884
https://doi.org/10.1186/1471-2105-13-86
https://doi.org/10.1186/1471-2105-13-86
https://www.ncbi.nlm.nih.gov/pubmed/16632515
https://doi.org/10.1093/biostatistics/kxj037
https://www.ncbi.nlm.nih.gov/pubmed/21321970
https://doi.org/10.1002/jat.1649
https://www.ncbi.nlm.nih.gov/pubmed/22641018
https://doi.org/10.1038/nrg3230
https://doi.org/10.1038/nrg3230
https://www.ncbi.nlm.nih.gov/pubmed/27040690
https://doi.org/10.1016/j.ajhg.2016.02.019
https://www.ncbi.nlm.nih.gov/pubmed/26231242
https://doi.org/10.1007/s40572-014-0040-x
https://doi.org/10.1007/s40572-014-0040-x
https://www.ncbi.nlm.nih.gov/pubmed/28410574
https://doi.org/10.1186/s12859-017-1611-2
https://doi.org/10.1186/s12859-017-1611-2
https://www.ncbi.nlm.nih.gov/pubmed/24525453
https://doi.org/10.4161/epi.28153
https://www.ncbi.nlm.nih.gov/pubmed/23644563
https://doi.org/10.4161/epi.24401
https://www.ncbi.nlm.nih.gov/pubmed/23757598
https://doi.org/10.1289/ehp.1205925
https://www.ncbi.nlm.nih.gov/pubmed/26690190
https://doi.org/10.3390/ijerph121214990
https://www.ncbi.nlm.nih.gov/pubmed/22257669
https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.1093/bioinformatics/bts034
https://www.ncbi.nlm.nih.gov/pubmed/17907809
https://doi.org/10.1371/journal.pgen.0030161
https://www.ncbi.nlm.nih.gov/pubmed/21058334
https://doi.org/10.1002/gepi.20533
https://www.ncbi.nlm.nih.gov/pubmed/26771021
https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.1016/j.cels.2015.12.004
https://www.ncbi.nlm.nih.gov/pubmed/24368509
https://doi.org/10.1038/jes.2013.89
https://doi.org/10.1038/jes.2013.89
https://www.ncbi.nlm.nih.gov/pubmed/22208756
https://doi.org/10.1016/j.envint.2011.07.015
https://www.ncbi.nlm.nih.gov/pubmed/25928765
https://doi.org/10.1186/s12859-015-0568-2
https://doi.org/10.1186/s12859-015-0568-2
https://www.ncbi.nlm.nih.gov/pubmed/29328878
https://doi.org/10.1146/annurev-publhealth-040617-014629
https://doi.org/10.1146/annurev-publhealth-040617-014629
https://www.ncbi.nlm.nih.gov/pubmed/27142380
https://doi.org/10.1186/s13059-016-0935-y
https://doi.org/10.1186/s13059-016-0935-y
https://www.ncbi.nlm.nih.gov/pubmed/24887635
https://doi.org/10.1186/gb-2014-15-5-r73
https://doi.org/10.1186/gb-2014-15-5-r73
https://www.ncbi.nlm.nih.gov/pubmed/25701811
https://doi.org/10.1016/j.envres.2015.02.004
https://doi.org/10.1016/j.envres.2015.02.004
https://www.ncbi.nlm.nih.gov/pubmed/29040626
https://doi.org/10.1093/ije/dyx202
https://doi.org/10.1093/ije/dyx202
https://www.ncbi.nlm.nih.gov/pubmed/23458756
https://doi.org/10.1289/ehp.1205875
https://www.ncbi.nlm.nih.gov/pubmed/16269585
https://doi.org/10.1093/aje/kwi330
https://www.ncbi.nlm.nih.gov/pubmed/24013868
https://doi.org/10.1289/ehp.1206421
https://www.ncbi.nlm.nih.gov/pubmed/1893592
https://www.ncbi.nlm.nih.gov/pubmed/28579391
https://doi.org/10.1016/j.stemcr.2017.05.003
https://www.ncbi.nlm.nih.gov/pubmed/17879257
https://doi.org/10.1002/jat.1301
https://www.ncbi.nlm.nih.gov/pubmed/25972926
https://doi.org/10.1186/1756-8935-8-6
https://www.ncbi.nlm.nih.gov/pubmed/26424855
https://doi.org/10.1093/bioinformatics/btv560
https://www.ncbi.nlm.nih.gov/pubmed/27717381
https://doi.org/10.1186/s13059-016-1066-1
https://www.ncbi.nlm.nih.gov/pubmed/22383894
https://doi.org/10.1371/journal.pgen.1002522
https://www.ncbi.nlm.nih.gov/pubmed/25493608
https://doi.org/10.1289/ehp.1408626
https://doi.org/10.1289/ehp.1408626
https://www.ncbi.nlm.nih.gov/pubmed/20682481
https://doi.org/10.1289/ehp.1002114
https://doi.org/10.1289/ehp.1002114
https://www.ncbi.nlm.nih.gov/pubmed/25605792
https://doi.org/10.1093/nar/gkv007
https://www.ncbi.nlm.nih.gov/pubmed/25304211
https://doi.org/10.1093/toxsci/kfu210
https://www.ncbi.nlm.nih.gov/pubmed/29637476
https://doi.org/10.1007/s40572-018-0192-1


methylation in leukocytes from mother-baby pairs. Epigenetics 9(2):212–221,
PMID: 24169490, https://doi.org/10.4161/epi.26798.

Sen A, Heredia N, Senut MC, Hess M, Land S, Qu W, et al. 2015. Early life lead ex-
posure causes gender-specific changes in the DNA methylation profile of DNA
extracted from dried blood spots. Epigenomics 7(3):379–393, PMID: 26077427,
https://doi.org/10.2217/epi.15.2.

Seow WJ, Kile ML, Baccarelli AA, Pan WC, Byun HM, Mostofa G, et al. 2014.
Epigenome-wide dna methylation changes with development of arsenic-
induced skin lesions in Bangladesh: a case-control follow-up study. Environ
Mol Mutagen 55(6):449–456, PMID: 24677489, https://doi.org/10.1002/em.21860.

Shabalin AA. 2012. Matrix eQTL: ultra fast eQTL analysis via large matrix opera-
tions. Bioinformatics 28(10):1353–1358, PMID: 22492648, https://doi.org/10.1093/
bioinformatics/bts163.

Smeester L, Bommarito PA, Martin EM, Recio-Vega R, Gonzalez-Cortes T, Olivas-
Calderon E, et al. 2017. Chronic early childhood exposure to arsenic is associ-
ated with a TNF-mediated proteomic signaling response. Environ Toxicol
Pharmacol 52:183–187, PMID: 28433805, https://doi.org/10.1016/j.etap.2017.04.007.

Stevens M, Cheng JB, Li D, Xie M, Hong C, Maire CL, et al. 2013. Estimating abso-
lute methylation levels at single-CpG resolution from methylation enrichment
and restriction enzyme sequencing methods. Genome Res 23(9):1541–1553,
PMID: 23804401, https://doi.org/10.1101/gr.152231.112.

Teschendorff AE, Marabita F, Lechner M, Bartlett T, Tegner J, Gomez-Cabrero D,
et al. 2013. A beta-mixture quantile normalization method for correcting probe
design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics
29(2):189–196, PMID: 23175756, https://doi.org/10.1093/bioinformatics/bts680.

Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, et al. 2012.
The accessible chromatin landscape of the human genome. Nature
489(7414):75–82, PMID: 22955617, https://doi.org/10.1038/nature11232.

Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, et al. 2001.
Missing value estimation methods for DNA microarrays. Bioinformatics
17(6):520–525, PMID: 11395428, https://doi.org/10.1093/bioinformatics/17.6.520.

Van Geen A, Ahsan H, Horneman AH, Dhar RK, Zheng Y, Hussain I, et al. 2002.
Promotion of well-switching to mitigate the current arsenic crisis in Bangladesh.
Bull World Health Organ 80(9):732–737, PMID: 12378292, https://doi.org/10.1590/
S0042-96862002000900010.

van Iterson M, van Zwet EW, BIOS Consortium, Heijmans BT. 2017. Controlling bias
and inflation in epigenome- and transcriptome-wide association studies using
the empirical null distribution. Genome Biol 18(1):19, PMID: 28129774,
https://doi.org/10.1186/s13059-016-1131-9.

Willer CJ, Li Y, Abecasis GR. 2010. Metal: fast and efficient meta-analysis of
genomewide association scans. Bioinformatics 26(17):2190–2191, PMID:
20616382, https://doi.org/10.1093/bioinformatics/btq340.

Environmental Health Perspectives 057011-15 127(5) May 2019

https://www.ncbi.nlm.nih.gov/pubmed/24169490
https://doi.org/10.4161/epi.26798
https://www.ncbi.nlm.nih.gov/pubmed/26077427
https://doi.org/10.2217/epi.15.2
https://www.ncbi.nlm.nih.gov/pubmed/24677489
https://doi.org/10.1002/em.21860
https://www.ncbi.nlm.nih.gov/pubmed/22492648
https://doi.org/10.1093/bioinformatics/bts163
https://doi.org/10.1093/bioinformatics/bts163
https://www.ncbi.nlm.nih.gov/pubmed/28433805
https://doi.org/10.1016/j.etap.2017.04.007
https://www.ncbi.nlm.nih.gov/pubmed/23804401
https://doi.org/10.1101/gr.152231.112
https://www.ncbi.nlm.nih.gov/pubmed/23175756
https://doi.org/10.1093/bioinformatics/bts680
https://www.ncbi.nlm.nih.gov/pubmed/22955617
https://doi.org/10.1038/nature11232
https://www.ncbi.nlm.nih.gov/pubmed/11395428
https://doi.org/10.1093/bioinformatics/17.6.520
https://www.ncbi.nlm.nih.gov/pubmed/12378292
https://doi.org/10.1590/S0042-96862002000900010
https://doi.org/10.1590/S0042-96862002000900010
https://www.ncbi.nlm.nih.gov/pubmed/28129774
https://doi.org/10.1186/s13059-016-1131-9
https://www.ncbi.nlm.nih.gov/pubmed/20616382
https://doi.org/10.1093/bioinformatics/btq340

	Association of Arsenic Exposure with Whole Blood DNA Methylation: An Epigenome-Wide Study of Bangladeshi Adults
	Introduction
	Methods
	Study Population
	Exposure Assessment
	DNA Methylation
	Association Analyses
	Differential Methylation Regional Analysis
	Gene Set Enrichment Analyses
	Meta-Analysis
	Gene Expression
	Local Methylation Quantitative Trait Loci (cis-mQTL) Analyses of Arsenic-Associated CpGs
	Replication Analysis for Meta-Analysis Arsenic-Associated CpGs among Andean Women

	Results
	Urinary arsenic–associated DNA Methylation in HEALS
	Water Arsenic–Associated DNA Methylation in HEALS
	Arsenic-Associated Regions in HEALS
	Enrichment of Arsenic-Associated CpGs within Genomic Features and Gene Sets
	Meta-Analysis of Urinary Arsenic and Genome-Wide DNA Methylation in HEALS and BEST
	Enrichment of Arsenic-Associated CpGs (from Meta-Analysis) in Genomic Features and Gene Sets

	Discussion
	Conclusions
	Acknowledgments
	References


